首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2358篇
  免费   212篇
  国内免费   5篇
  2021年   37篇
  2020年   19篇
  2019年   23篇
  2018年   38篇
  2017年   25篇
  2016年   57篇
  2015年   115篇
  2014年   122篇
  2013年   139篇
  2012年   210篇
  2011年   155篇
  2010年   96篇
  2009年   80篇
  2008年   116篇
  2007年   116篇
  2006年   127篇
  2005年   93篇
  2004年   97篇
  2003年   87篇
  2002年   66篇
  2001年   73篇
  2000年   59篇
  1999年   73篇
  1998年   28篇
  1997年   22篇
  1996年   11篇
  1995年   13篇
  1994年   19篇
  1993年   15篇
  1992年   34篇
  1991年   38篇
  1990年   31篇
  1989年   20篇
  1988年   21篇
  1987年   20篇
  1986年   26篇
  1985年   26篇
  1984年   13篇
  1983年   19篇
  1982年   19篇
  1981年   14篇
  1980年   16篇
  1979年   20篇
  1978年   18篇
  1977年   10篇
  1976年   17篇
  1975年   15篇
  1974年   11篇
  1973年   15篇
  1972年   13篇
排序方式: 共有2575条查询结果,搜索用时 296 毫秒
61.
62.
The molar proportions and relative rates of synthesis of histones in normal and hypophysectomized rat testis seminiferous epithelial cells were determined. After hypophysectomy the molar proportions of histones H1, H2B and (H2A + protein A24) in seminiferous epithelial cells of rat testis increased while their corresponding variants TH1-x, TH2B-x and X2 decreased, but the molar proportions of major-class histones (i.e., sum of subfractions) remained relatively constant and similar to the proportions in somatic cells. The apparent molar proportions of the labeled histones, determined immediately after 2-h periods of [3H]leucine incorporation, were much higher relative to H4 than the proportions of total histones determined by dye binding. The values, however, approached the molar proportions of total histones when rats were killed 11 days after the [3H]leucine injection. Two-dimensional gel electrophoresis confirmed that the high initial molar proportions relative to H4 by [3H]leucine incorporation were not due to the possible contamination by highly-labeled non-histone proteins. The specific activity of histone H4 relative to the specific activity of DNA, determined immediately after 3-h periods of [3H]leucine and [14C]thymidine incorporations was similar to the value when rats were killed 13 days after the injections. It is proposed that histones of seminiferous epithelial cells are synthesized disproportionally relative to H4 and in excess of the quantities required for polynucleosome assembly. The excess histones are subsequently displaced or degraded slowly.  相似文献   
63.
It has been known for several years that DNA replication and histone synthesis occur concomitantly in cultured mammalian cells. Normally all five classes of histones are synthesized coordinately. However, mouse myeloma cells, synchronized by starvation for isoleucine, synthesize increased amounts of histone H1 relative to the four nucleosomal core histones. This unscheduled synthesis of histone H1 is reduced within 1 h after refeeding isoleucine, and is not a normal component of G1. The synthesis of H1 increases coordinately again with other histones during the S phase. The DNA synthesis inhibitors, cytosine arabinoside and hydroxyurea, block all histone synthesis in S-phase cells. The levels of histone H1 mRNA, relative to the other histone mRNAs, is increased in isoeleucine-starved cells and decreases rapidly after refeeding isoleucine. The increased incorporation of histone H1 is at least partially due to the low isoleucine content of histone H1. Starvation of cells for lysine resulted in a decrease in H1 synthesis relative to core histones. Again the ratio was altered on refeeding the amino acid. 3T3 cells starved for serum also incorporated only H1 histones into chromatin. The ratio of different H1 proteins also changed. The synthesis of the H10 protein was predominant in G0 cells, and reduced in S-phase cells. These data indicate the metabolism of H1 is independent of the other histones when cell growth is arrested.  相似文献   
64.
Summary The binding of the anionic fluorescent probe 1-anilino-8-naphthalene-sulfonate (ANS) was used to estimate the surface potential of fragmented sarcoplasmic reticulum (SR) derived from rabbit skeletal muscle. The method is based on the observation that ANS is an obligatory anion whose equilibrium constant for binding membranes is proportional to the electrostatic function of membrane surface potential, exp(e0/kT, where 0 is the membrane surface potential,e is the electronic charge, andkT has its usual meaning. The potential measured is characteristic of the ANS bindings of phosphatidylcholine head groups and is about one-third as large as the average surface potential predicted by the Gouy-Chapman theory. At physiological ionic strength the surface potentials, measured by ANS, referred to as the aqueous phase bathing the surface, were in the range –10 to –15 mV. This was observed for the outside and inside surfaces of the Ca2+-ATPase-rich fraction of theSR and for both surfaces of theSR fraction rich in acidic Ca2+ binding proteins. The inside and outside surfaces were differentiated on the basis of ANS binding kinetics observed in stopped-flow rapid mixing experiments. A mechanism by which changes in Ca2+ concentration could give rise to an electrostatic potential across the membrane and possibly result in changes in Ca2+ permeability.The dependence of the surface potential on the monovalent ion concentration in the medium was used together with the Gouy-Chapman theory to determine the lower limits for the surface charge density for the inside and outside surfaces of the two types ofSR. Values for the Ca2+-ATPase richSR fraction were between 2.9×103 and 3.8×103 esu/cm2, (0.96×10–6 and 1.26×10–6 C/cm2) with no appreciable transmembrane asymmetry. A small amount of asymmetry was observed in the values for the inside and outside surfaces of the fraction rich in acidic binding proteins which were ca. 6.6×103 and ca. 2.2×103 esu/cm2 (2.2×10–6 and 0.73×10–6 C/cm). The values could be accounted for by the known composition of negatively-charged phospholipids in theSR. The acidic Ca2+ binding proteins were shown to make at most a small contribution to the surface charge, indicating that their charge must be located at least several tens of Å from the membrane surface. The experiments gave evidence for a Donnan effect on the K+ distribution in the fraction rich in acidic binding proteins. This could be accounted for by the known concentration of acidic binding proteins in thisSR fraction.The equilibrium constant for ANS was shown to be more sensitive to changes in the divalent cation concentration than to changes in the monovalent cation concentration, as predicted by the Gouy-Chapman theory. Use of these findings together with the stopped-flow rapid mixing techniques constitutes a method for rapid and continuous monitoring of changes in ion concentrations in theSR lumen.  相似文献   
65.
66.
Divalent cations induce the aggregation of chromaffin granule ghosts (CG membranes) at millimolar concentrations. Monovalent cations produce the same effect at 100-fold higher concentrations. The kinetics of the dimerization phase were followed by light-scattering changes observed in stopped-flow rapid mixing experiments. The rate constant for Ca2+-induced dimerization (kapp) is 0.86-1.0 x 10(9) M-1sec-1, based on the "molar" vesicle concentration. This value is close to the values predicted by theory for the case of diffusion-controlled reaction (7.02 x 10(9) M-1sec-1), indicating that there is no energy barrier to dimerization. Arrhenius plots between 10 degrees and 42 degrees C support this; the activation energy observed, +4.4 Kcal, is close to the value (4.6-4.8 Kcal) predicted for diffusion control according to theory. Artificial vesicles prepared from CG lipids were also found to have cation-induced aggregation, but the rates (values of kapp) were less than 1/100 as large as those with native CG membranes. Also, significant differences were found with respect to cation specificity. It is concluded that the slow rates are due to the low probability that the segments of membrane which approach will be matched in polar head group composition and disposition. Thus large numbers of approaches are necessary before matched segments come into aposition. The salient features of the chromaffin granule membrane aggregation mechanism are as follows: (a) In the absence of cations capable of shielding and binding, the membranes are held apart by electrostatic repulsion of their negatively charged surfaces. (b) The divalent and monovalent cation effects on aggregation are due to their ability to shield these charges, allowing a closer approach of the membrane surfaces. (c) The major determinants of the aggregation rates of CG membranes are proteins which protrude from the (phospholipid) surface of the membrane and serve as points of primary contact. Transmembrane contact between these proteins does not require full neutralization of the surface charge and surface potential arising from the negatively charged phospholipids. (d) After contact between proteins is established, the interaction between membranes can be strengthened through transmembrane hydrogen bonding of phosphatidyl ethanolamine polar head groups, divalent cation-mediated salt bridging, and segregation of phosphatidylcholine out of the region of contact.  相似文献   
67.
68.
Bacteriophage T4-infected Escherichia coli rendered permeable to nucleotides by sucrose plasmolysis exhibited two apparently separate pathways or channels to T4 DNA with respect to the utilization of exogenously supplied substrates. By one pathway, individual labeled ribonucleotides, thymidine (tdR), and 5-hydroxymethyl-dCMP could be incorporated into phage DNA. Incorporation of each of these labeled compounds was not dependent upon the addition of the other deoxyribonucleotide precursors, suggesting that a functioning de novo pathway to deoxyribonucleotides was being monitored. The second pathway or reaction required all four deoxyribonucleoside triphosphates or the deoxyribonucleoside monophosphates together with ATP. However, in this reaction, dTTP was not replaced by TdR. The two pathways were also distinguished on the basis of their apparent Mg2+ requirements and responses to N-ethylmaleimide, micrococcal nuclease, and to hydroxyurea, which is a specific inhibitor of ribonucleoside diphosphate reductase. Separate products were synthesized by the two channels, as shown by density-gradient experiments and velocity sedimentation analysis. Each of the pathways required the products of the T4 DNA synthesis genes. Furthermore, DNA synthesis by each pathway appeared to be coupled to the functioning of several of the phage-induced enzymes involved in deoxyribonucleotide biosynthesis. Both systems represent replicative phage DNA synthesis as determined by CsCl density-gradient analysis. Autoradiographic and other studies provided evidence that both pathways occur in the same cell. Further studies were carried out on the direct role of dCMP hydroxymethylase in T4 DNA replication. Temperature-shift experiments in plasmolyzed cells using a temperature-sensitive mutant furnished strong evidence that this gene product is necessary in DNA replication and is not functioning by allowing preinitiation of DNA before plasmolysis.  相似文献   
69.
Some properties of histidine:pyruvate transaminase (HPT) and phenylalanine:pyruvate transaminase (PPT) in the cytosol of rat liver were studied. HPT and PPT activity could not be separated by DEAE-Sephadex A-50 or hydroxylapatite column chromatography, and the ratio of HPTPPT activity remained constant during these purification procedures. The two enzyme activities also showed similar heat stability and responses to glucagon injection. Based on these findings, we suggest that a single enzyme may specifically catalyze histidine:pyruvate and phenylalanine:pyruvate transamination.  相似文献   
70.
Catecholamines induce unique growth and secretory responses in salivary glands. An analysis of three enzyme activities involved in cyclic AMP metabolism was carried out to identify the specificity of these responses for salivary glands. Although parotid adenylate cyclase has an unusually high specific activity, its kinetic properties and responses to NaF, guanine nucleotides, and isoproterenol are similar to other tissues not stimulated to grow after isoproterenol stimulation. Solubilized adenylate cyclase was separated from other membrane proteins by isoelectric focusing on polyacrylamide gels. There was a single broad peak of activity witha pI of 5.9. Parotid protein kinase has a subcellular distribution and substrate preference similar to hepatic protein kinase. Activation by cyclic AMP is also similar to that reported for other tissues, with a Ka of 1.2 - 10(-7) M. Parotid cyclic AMP and cyclic GMP phosphodiesterases are a heterogeneous group of enzymes with relatively low specific activity as compared with mouse pancreas, liver and brain. Isoelectric focusing of supernatant phosphodiesterases revealed at least sixpeaks of enzyme activity in the pI range of 4-6. Previous reports of a large increase in parotid cyclic AMP levels after in vivo administration of catecholamines and specific growth and secretion could be the result of a relatively high specific activity adenylate cyclase associated with low specific activity cyclic AMP phosphodiesterases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号